A Visual, Intuitive Guide to Imaginary Numbers 直觀理解虛數
Imaginary numbers always confused me. Like understanding e, most explanations fell into one of two categories:
虛數一直困惑著我。和理解e一樣,大多數解釋無非是以下兩種:
? It’s a mathematical abstraction, and the equations work out. Deal with it.
? 這是數學的抽象概念。很好用。
? It’s used in advanced physics, trust us. Just wait until college.
? 物理上會用到的!信我!大學里有!?。?br />
Gee, what a great way to encourage math in kids! Today we’ll assault this topic with our favorite tools:
哇,這也太能激勵孩子們學數學了吧!現在我就要用我們最愛的工具來解決這個問題:
? Focusing on relationships, not mechanical formulas.
? 關注的是關系而非機械的公式
? Seeing complex numbers as an upgrade to our number system, just like zero, decimals and negatives were.
? 把虛數視作我們對數字系統的升級,跟0,小數,負數一樣。
? Using visual diagrams, not just text, to understand the idea.
? 用圖表取代文本。
And our secret weapon: learning by analogy. We’ll approach imaginary numbers by observing its ancestor, the negatives. Here’s your guidebook:
還有我們的秘密武器:用類比來學習。我們會通過虛數的祖先(負數)來學習虛數。指南如下:
It doesn’t make sense yet, but hang in there. By the end we’ll hunt down i and put it in a headlock, instead of the reverse.
好像不是很明白,不過堅持一會吧。最后我們會抓住i而不是被i卡脖子。